OPTIMIZATION OF MICROWAVE-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM MALE FLOWERS (CARICA PAPAYA L.) USING RESPONSE SURFACE METHODOLOGY

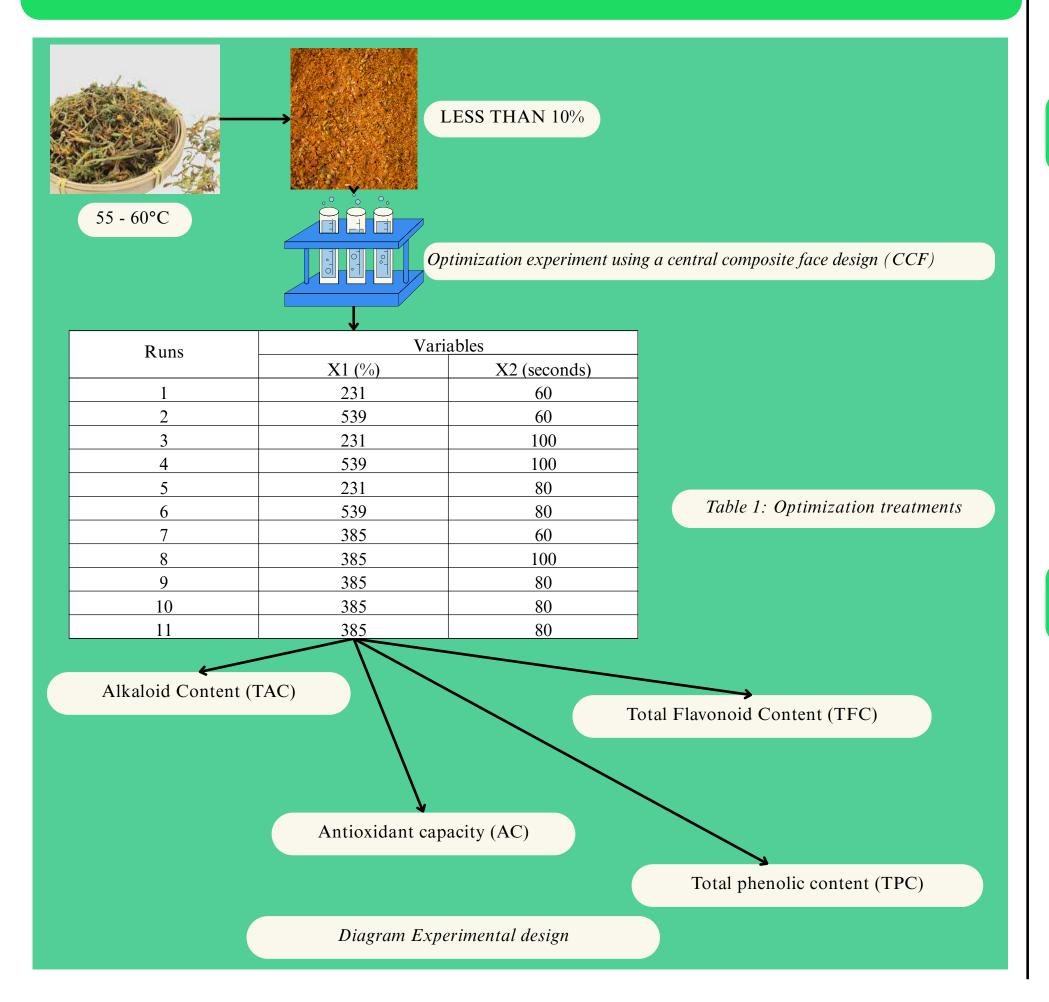
Tuan Minh Pham¹, Tu Thi Nguyen¹, Hang Thi Thanh Le¹

¹ Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Viet Nam

ABSTRACT

The study was conducted with the aim of optimizing the extraction conditions for alkaloids and bioactive compounds from male papaya flowers (Carica papaya L.) using microwave-assisted extraction, to produce male papaya flower honey extract. The microwave power (119W – 700W) and time (60 – 120 seconds) were examined by using the experimental design employed the Response Surface Methodology (RSM) with a Central Composite Face-centered (CCF) model. The results demonstrated that the optimal extraction conditions were achieved at a microwave power of 385W and a microwave time of 80 seconds. In these conditions, alkaloid content, polyphenol content, flavonoid content, and antioxidant activity reached 0.033 \pm 0.001 mg BER-H/g, 9.15 \pm 0.14 mg GAE/g, 3.39 \pm 0.13 mg rutin/g, 12.93 \pm 0.17 mg vitamin C/g, respectively.

RESULTS AND DISCUSSION


	Table 2: Results of optimization treatments affecting the extraction process					
Runs	X1 (%)	X2 (seconds)	TAC (mg BER – H/g)	TPC (mg GAE/g)	TFC (mg rutin/g)	AC (mg vitamin C/g)
1	231	60	0.021	8.31	2.419	10.86
2	539	60	0.023	8.496	2.999	11.161
3	231	100	0.023	8.522	2.567	11.63
4	539	100	0.026	8.675	3.118	11.635
5	231	80	0.026	8.702	2.744	11.68
6	539	80	0.028	8.871	3.31	11.992
7	385	60	0.027	8.764	3.041	11.992
8	385	100	0.029	8.96	3.175	12.475
9	385	80	0.032	9.07	3.314	12.825
10	385	80	0.034	9.315	3.544	12.829
11	385	80	0.034	9.076	3.318	13.129

INTRODUCTION

Figure 1: Male Papaya flowers (Carica papaya L.)

MATERIALS AND METHODS

Based on the ANOVA results, the p-values for both the first-order and second-order regression coefficients were > 0.05, indicating that the regression equation is statistically significant. Microwave power (X1) and microwave time (X2) have a substantial impact on the bioactive compounds in this study, particularly alkaloids.

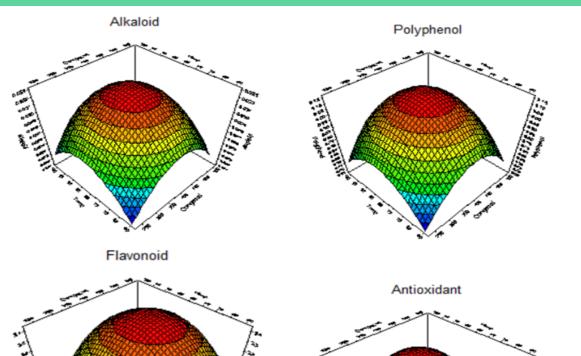


Figure 2: Response surface model illustrating the effect of microwave power and microwave time on alkaloid content, polyphenol content, flavonoid content, antioxidant activity

Table 3: Optimal parameters adjusted						
Parameters	Content					
TAC (mg BER -H $/g$)	0.033 ± 0.001					
TPC (mg GAE/g)	9.15 ± 0.14					
TFC (mg rutin/g)	3.39 ± 0.13					
AC (mg Vitamin C/g)	12.93 ± 0.17					

CONCLUSION

The extraction process of male papaya flowers (Carica papaya L.) using the microwaveassisted extraction method described in this study. The highest extraction efficiency was obtained at a microwave power of 385W and a microwave time of 80 seconds. The alkaloid content reached 0.033 ± 0.001 mg/g, the total polyphenol content reached 9.15 ± 0.14 mg/g, the flavonoid content reached 3.39 ± 0.13 mg/g, and the antioxidant activity reached 12.93 ± 0.17 mg/. These results provide a basis not only for further research but also for potential industrial applications to maximize the biological activities of male papaya flowers.

REFERENCES

Chew, S. K., Teoh, W. H., Hong, S. L., & Yusoff, R. (2022). Extraction of rutin from the leaf of male Carica papaya Linn. using microwave-assisted and ultrasound-assisted extractive methods. ASEAN Journal of Chemical Engineering, 22(2), 1–9. https://doi.org/10.22146/ajche.77375
Dwivedi, M. K., Sonter, S., Mishra, S., Patel, D. K., & Singh, P. K. (2020). Antioxidant, antibacterial activity, and phytochemical characterization of Carica papaya flowers. Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 23. https://doi.org/10.1186/s43088-020-00048-w
Rumpf, J., R. Burger, and M.J.I.J.o.B.M. Schulze. (2023). Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. 233: p. 123470