

RAPID ASSESSMENT OF EGG FRESHNESS BY HANDHELD NIR SPECTROMETER COUPLED WITH RANDOM FOREST ALGORITHM

Nga Thi Thanh Ha^{1,3}, Hoa Xuan Mac^{1,3}, Thanh Tung Pham^{1,4}, Lien Le Phuong Nguyen¹, László Baranyai¹, László Ferenc Friedrich¹, Adrienn Tóth¹, Csaba Németh²

and Quang Duc Nguyen¹

¹Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; ²Capriovus Ltd., 2317 Szigetcsép, Hungary;

³Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh 700000, Vietnam; ⁴Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh 700000, Vietnam[.]

1. Introduction

2. Materials and methods

A total of 150 freshly laid hen eggs (size L: 63 – 73 g) were obtained by Capriovus Ltd (Szigetcsép, Hungary).

This study aims to evaluate the feasibility of using a handheld NIR spectrometer combined with the RF algorithm to monitor egg freshness during storage

3. Results

3.1. Qualitative analysis of egg freshness

Table 1. Classification result of eggs based on quality grades (HU)

		Training		Testing						
Mode1	Pre- processing	Hyper- parameter	Overall accuracy (%)	Overall accuracy (%)	F1-score per egg grade (%)			Average		
					AA	А	В	F1-score (%)		
PLS-DA	Raw	LV = 14	100	99.18	98.46	97.85	98.26	98.06		
	SGS	LV = 14	99.21	100	100	98.21	99.75	98.98		
	MSC	LV = 19	99.15	98.54	98.18	99.15	99.16	98.83		

3.2. Estimation of Haugh unit

Fig 1. Design of experiment

	1D	LV = 13	99.10	98.91	98.46	98.45	99.26	98.86	
	2D	LV = 15	95.18	92.62	84.75	91.67	96.35	94.01	
RF-C	Raw	mtry = 2	97.32	96.72	96.88	91.30	98.51	95.56	
	SGS	mtry = 6 5	97.05	97.54	95.38	100	97.78	97.72	
	MSC	mtrx = 2	98.92	99.18	98.46	97.78	100	98 .75	
	1D	mtrx = 2	97.93	96.72	93.55	100	97.10	96.88	
	2D	mtry = 65	90.64	92.62	87.50	93.02	94.89	91.80	

4. Conclusion

Based on the results, this study demonstrated that handheld NIR spectroscopy combined with Random Forest (RF) models and multiplicative scatter correction (MSC) is an effective, non-destructive method for accurately assessing egg freshness during storage.

*This work was supported by NRDIO Project No. 2023-1.1.1-PIACI_FÓKUSZ-2024-00035 and TKP2021-NVA-0022 at Doctoral School of Food Science, MATE.