

HUNGARIAN UNIVERSITY OF AGRICULTURE AND LIFE SCIENCES

OPTIMIZATION OF FERMENTATION CONDITIONS FOR PRODUCTION OF HUNGARIAN SOUR CHERRY SPIRIT USING THE RESPONSE SURFACE METHODOLOGY

Tuan M. Pham^{1,2}, Weizhe Sun¹, Erika Bujna¹, Ágoston Hoschke¹, Quang D. Nguyen¹

¹Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences

²Institute of Biotechnology and Food Technology, Industrial University of Hochiminh City

INTRODUCTION

Pálinka is a traditional fruit spirit and a kind of gastronomic heritage in Hungary. In Pákinka production, one of the most important processes affecting the quality and yield of spirits is fermentation. Based on single-factor and three-factor influence level tests by following the Plackett-Burman design, the fermentation process from sour cherry juice concentrate and *Saccharomyces cerevisiae* by using Response surface methodology (RSM) coupled with the central composite rotatable design was investigated to optimize fermentation conditions.

MATERIALS

EXPERIMENTS

Yeast strain, Uvaferm Danstil A, were provided by the Kokoferm Limited Company (Gyöngyös, Hungary).

The yeast was activated before fermentation by mixing 1 g dry yeast with 1 g sucrose, 1 g yeast nutrient (Uvavital TM, Lallemand, France) and 100 mL warm water (28 °C), then the mixture was aerated by gentle agitation for 2 hours.

The fermentation medium was a cherry juice (concentrate) from the INNIGHT company (Hungary). Fermentation temperature, pH and Brix were studied through a central composite experimental design (CCD). A quadratic model was applied to study the combined influence of three independent variables namely temperature $(X_1, °C)$, pH (X_2) and soluble solids content $(X_3, Brix)$ following table 1. The production yield of alcohol (Y_1) and volatile compound (Y_2) was chosen as dependent variables.

For Y₁ and Y₂ determination, the equations presented below were used.

 $Y_1 = P_1/S*100$ (Eq.1)

 $Y_2 = P_2/S*100$ (Eq.2)

where S is total sugar, P_1 is alcohol content, P_2 is total volatile compounds.

The majority of compounds in total volatile compounds include ethyl acetate, ethyl formate, ethyl lactate, ethyl hexanoate, butyl acetate, propyl acetate, isoamyl acetate, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol, and 2-phenylethanol.

With the optimum values obtained, 4.8L sour cherry juice was fermented. After the alcoholic fermentation completed, the fermented mashes were distilled twice. The heart distillate was analysed volatile compounds.

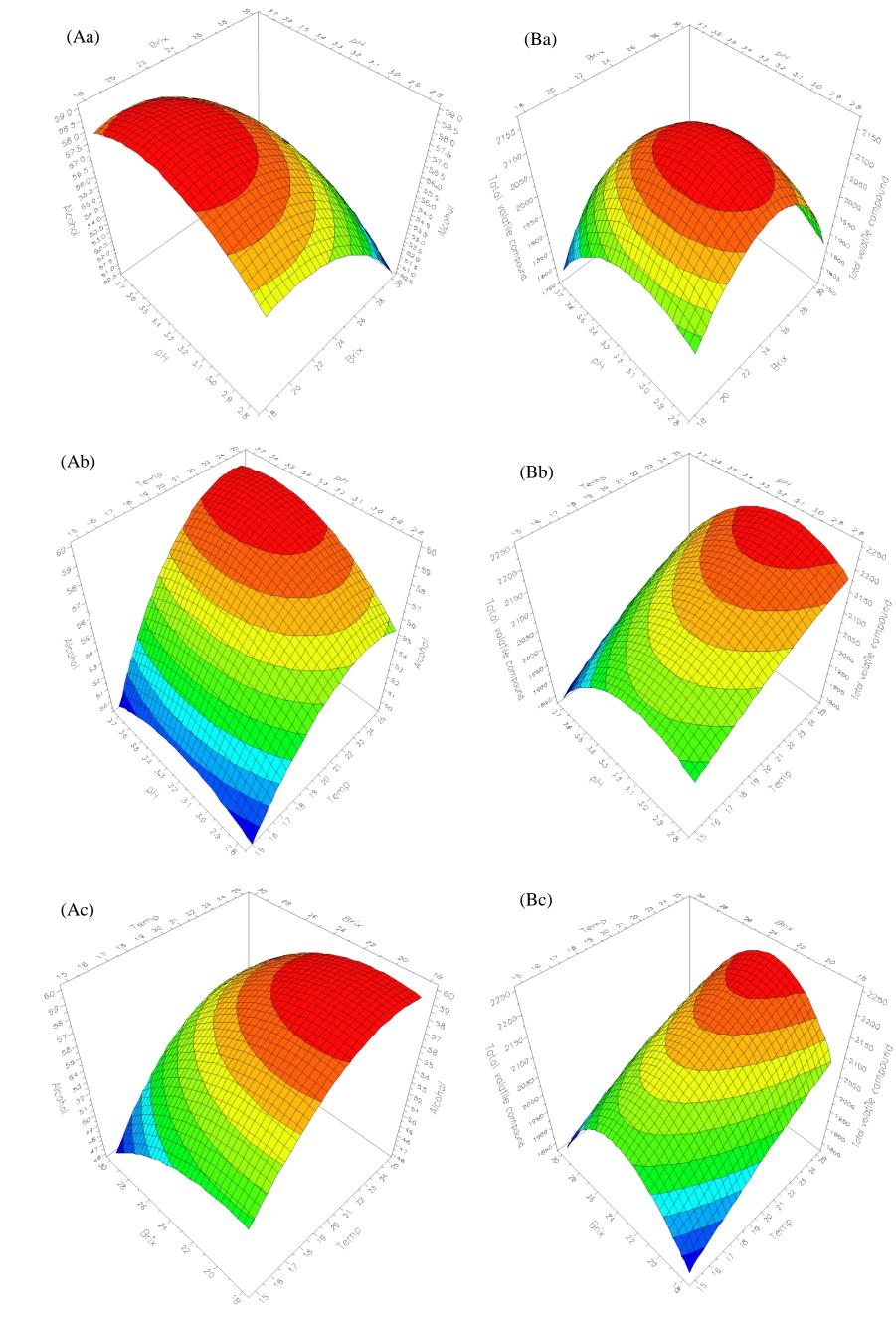

RESULTS

Table 1. Independent variables in the experimental plan

Variables	Coded levels			
Variables	- 1	0	+ 1	
Temperature, X ₁ (°C)	15	20	25	
pH, X ₂	2.75	3.25	3.75	
Soluble solids content, X ₃ (°Brix)	18	24	30	

Table 2. The central composite design matrix andexperimental values

	Independent variables			Dependent variables	
Run	X ₁ (°C)	X ₂	X ₃ (°Brix)	Y ₁	Y ₂

Full predictive equations were given below:

$$\begin{split} Y_1 &= 57.91 + 4.11^* X_1 + 0.97^* X_2 - 2.61^* X_3 - 2.87^* X_1^2 - 1.63^* X_2^2 \\ &- 1.98^* X_3^2 + 1.01^* X_1 X_2 + 0.31^* X_1 X_3 + 0.1^* X_2 X_3 \text{ (Eq.3)} \\ Y_2 &= 2153.09 + 103.64^* X_1 - 76.26^* X_2 - 24.30^* X_3 - 20.44^* X_1^2 - 116.49^* X_2^2 \\ &- 198.54^* X_3^2 + 6.88^* X_1 X_2 - 26.22^* X_1 X_3 + 8.54^* X_2 X_3 \text{ (Eq.4)} \end{split}$$

Table 4. Estimated optimum values and predicted, experimental values of responses

Variables	Optimum values	Predicted values	Experimental
		values	values
Temperature, X ₁ , (°C)	24.71		
pH, X ₂	3.25		
Total soluble solids, X ₃ , (°Brix)	22.49		
Alcohol's production yield, Y_1		59.68	60.86
Alcohol content, (vol.%)		9.02	9.20
Volatile compounds' production yield, Y ₂		2231.68	2339.7
Volatile compounds, (mg/L)		337.37	353.71

_						
	1	15	2.75	18	50.7	1801.08
	2	25	2.75	18	56.48	2035.88
	3	15	3.75	18	50.7	1605.58
	4	25	3.75	18	59.79	1895.42
	5	15	2.75	30	44.47	1789.65
	6	25	2.75	30	50.75	1947.09
	7	15	3.75	30	44.14	1655.82
	8	25	3.75	30	55.22	1813.25
	9	15	3.25	24	50.22	2032.79
	10	25	3.25	24	59.1	2229.64
	11	20	2.75	24	54.76	2114.66
	12	20	3.75	24	57.04	1955.67
	13	20	3.25	18	57.04	2008.55
	14	20	3.25	30	54.06	1897.68
	15	20	3.25	24	58.48	2149.30
	16	20	3.25	24	58.9	2140.80
	17	20	3.25	24	57.86	2174.91

Table 3. Estimated regression coefficients and varianceanalysis results for response variables

	<u> </u>		Y ₂	
Parameters	Coefficient values	p-values	Coefficient values	p-values
Constant	57.91	<0.0001***	2153.09	<0.0001***
X_1	4.11	<0.0001***	103.64	<0.0001***
X ₂	0.97	0.0128*	-76.26	<0.0001***
X ₃	-2.61	<0.0001***	-24.30	0.0113*
X ₁ ²	-2.87	0.0015**	-20.44	0.1809 ^{ns}
X ₂ ²	-1.63	0.0239*	-116.49	0.0001***
X ₃ ²	-1.98	0.0101*	-198.54	<0.0001***
$X_1 X_2$	1.01	0.0175*	6.88	0.4163 ^{ns}
X_1X_3	0.31	0.3753 ^{ns}	-26.22	0.0132*
X_2X_3	0.10	0.7615 ^{ns}	8.54	0.3193 ^{ns}
Q ²		0.889		0.942
R ²		0.984		0.993
R ² Adj.		0.964		0.985
RSD		0.926		22.52
P ANOVA		<0.05		<0.05
P _{LOF}		>0.05		>0.05

Figure 1. Response surface (a) pH vs. Brix, (b) pH vs. temperature, and (c) Brix vs. temperature on production yield of alcohol (A) and volatile compounds (B) from the fermentation of cherry juice

DISCUSSION

ANOVA analysis results showed these second-order regressions were statistically significant. Insignificant difference in pvalues of the lack of fit (pLOF> 0.05) indicated these models are sufficiently accurate for predicting the responses in production yield of alcohol and volatile compound. Besides, all R², adjusted R², and Q² for all response variables were higher than 0.8, which revealed a perfect model with good predictive power.

Table 5. Volatile compounds of fruit spirits from sour cherry

Volatilo compoundo	Deceriptive	Threshold	Concentration
Volatile compounds	Descriptive	(mg/L)	(mg/L 40% vol.)
Methanol	Acohol, solvent	10000	650.12
Higher alcohol			
1-Propanol	Alcoholic, pleasant odor	720	207.29
2-Propanol	Sweet odor, ethanol-odor	1500	14.73
1-Butanol	Alcoholic, pleasant odor	5	0.21
2-Butanol	Alcoholic, pleasant odor	10	0.29
2-methyl-1-propanol	Banana, ethanol-odor	200	468.08
2-methyl-1-butanol	Floral, fruity, almond	32	268.20
3-methyl-1-butanol	Sweet, malty, rancid	70	847.01
2-Phenylethanol	Roses, sweetish, perfumed	7.5	18.00
Total higher alcohol			1823.83
Ester			
Ethyl acetate	Ethereal, fruity, sweet	17	116.17
Ethyl formate	Rum-like, peach, apple	150	1.29
Ethyl lactate	Penetrating odor	5.8	1.41
Ethyl hexanoate	Apple, fruity, sweetish	1	0.92
Butyl acetate	Banana, fruity	1.83	0.12
Propyl acetate	Ethereal, fruity, perfumed	30	0.08
Isoamyl acetate	Bitter, green leaves	15	6.72
Total ester			126.72
Acetaldehyde	Pungent, fresh, green	10	136.13

References

- 1. László, Z., C. Hodúr, and J. Csanádi, "Pálinka": Hungarian Distilled Fruit, in Traditional Foods: General and Consumer Aspects, K. Kristbergsson and J. Oliveira, Editors. 2016, Springer US: Boston, MA. p. 313-318.
- 2. Hajar, N., et al. (2012). Optimization of ethanol fermentation from pineapple peel extract using response surface methodology (RSM). Engineering and Technology (WASET).
- 3. Tsegay, Z. T., et al. (2018). "Optimization of Cactus Pear Fruit Fermentation Process for Wine Production." Foods 7(8): 121.
- 4. Ec Regulation No 110/2008 Regulation (Ec) No 110/2008 Of The European Parliament And Of The Council Of 15 January 2008 On The Definition, Description, Presentation, Labelling And The Protection Of Geographical Indications Of Spirit Drinks And Repealing Council Regulation (Eec) No 1576/89. 39, 16-54.

The obtaining experimental values were close to the predicted values, which suggests that the obtaining optimization values have been reliable and could be applied in the spirits fermentation from cherry juices.

A total of 17 volatile compounds were identified and quantified in the Hungarian cherry spirit. In which, 1-propanol, 2-methyl-1-propanol, 2-methyl-1-butanol, and ethyl acetate were considered the major aroma compound in the spirit.

CONCLUSIONS

The results showed that response surface methodology coupled with the central composite rotatable design are powerful tools for modelling, optimizing, and studying the interactive effects of fermentation conditions (including temperature, pH, and total soluble solids) for alcohol and volatile compounds' production yield. Maximum production yields of alcohol of 59.68 (equivalent to alcohol content of 9.02% vol.) and volatile compounds of 2231.68 (equivalent to volatile compounds of 337.37 mg/L) were obtained at an optimized temperature of 24.71°C, pH of 3.25, and total soluble solids of 22.49 Brix. 1-propanol, 2-methyl-1-propanol, 2-methyl-1-butanol, and ethyl acetate were considered the major aroma compound in the cherry spirit. The results revealed that the production yields of alcohol and volatile compounds could be enhanced by optimizing fermentation conditions. It is suggested that the models obtained can be used to optimize the fermentation process in spirits production from sour cherry.

Acknowledgement This work was supported by the Hungarian Government through project No. EFOP-3.6.3-VEKOP-16-2017-00005. Pham Minh Tuan is PhD student at Food Science Dotoral School