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Abstract 

150 eggs were examined by acoustic response method for quality parameters and crack 

detection through seven weeks, stored at room temperature. The samples were tested in an 

upright and horizontal position as well, and the received signal spectra and their wavelet 

transforms were analyzed, after preprocessing, the obtained coefficients were used as input 

variables for estimation of the measured physical parameters by partial least squares (PLS) 

regression. Goodness-of-fit (GOF) statistics were calculated to evaluate the applicability of the 

method. Spectral data was also used for classification by crack presence and age by linear 

discriminant analysis (LDA) with different preprocessing parameters. Every estimation was 

validated by 10-fold cross-validation. Best approximations were achieved with spectral 

coefficients (measured in the upright position of the egg) for mass, with every estimation errors 

under 10%. With optimum signal processing parameters a 100% correct classification was 

achieved for crack detection and age estimation also. 
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Introduction 

Eggs are of high importance because of their nutritional value and their low ecological footprint 

among essential micro- and micronutrient sources. This expectedly will increase the demand 

for eggs in the future, therefore it is essential to develop reliable nondestructive testing (NDT) 

methods to estimate their physical properties and quality parameters. Such parameters can be 

the presence of cracks on the shell and the ratio of egg white vs the yolk for example. Several 

of these properties have industrial relevance, for instance the shell as a byproduct of egg powder 

manufacturing has economical value –and can be further processed forming consumer product 

with added value–, therefore calculation of the mass is desirable. Certain parameters 

corresponding with quality and processibility change throughout storage, such as the volume 

of the air chamber at the bottom, the viscosity and composition of the egg white due to 

decomposition, and so forth, therefore knowledge of the age of eggs are important. A 

hyperspectral imaging method was used by Zhang et al. (2015), and achieved  a root mean 



squared error of prediction (RMSEP%) of 4.01% for freshness, internal bubbles and scattered 

yolk were identified by support vector machine (SVM) models with an accuracy of 90.0% and 

96.3% respectively. The acoustic response method was found to be a useful tool to collect 

information about the internal properties of a sample non-destructively (Zsom-Muha el al., 

2007). Pan et al. (2005) examined response frequencies of eggs after a mechanical impact at 

the  equatorial zone, and achieved a crack detection rate of 87%. A similar accuracy rate of 

87.5% was achieved by Zhu et al (2012) using an acoustic response method, their discrimination 

method was based on Bayes theory. Cho et al. (2000) also developed a crack detection 

algorithm based on an impulse response method and discriminant analysis. They achieved a 6% 

and 4% classification error for intact and cracked eggs respectively. An interesting experimental 

method was used for crack detection by Jin et al. (2015), who created a rolling plate with seven 

steps, creating seven acoustic signals, therefore no external excitation was necessary and the 

impact became uniform. This method also is more industry-focused and easy to implement. 

They managed to identify the optimal number of steps for the discrimination threshold, but only 

a 90% correct classification was achieved, based on the Mahalanobis distance, but this method 

could probably be refined algorithmically. A serious problem with these articles is that they do 

not report the validation results, therefore no solid conclusions can be drawn regarding actual 

applicability. A paper of industrial relevance by Bain et al. (2006) reported the probability of 

cracking based on the dynamic stiffness (Kdyn) and also find that the amount of cracked eggs 

was double of what was estimated by the producer. Attar and Fathi (2014) measured the 

resonance frequencies of the shell, albumin and yolk, and found a 0.97 and 0.91 correlation 

between the shell’s resonant frequency and the strength and stiffness respectively. Wavelet 

transform based methods are becoming increasingly utilized lately because of the high 

calculation capacity increase witnessed in recent years. A crack detection method was used by 

Li et al. (2012) developed in MATLAB, and based on wavelet transformation and Bayesian 

discrimination, but the authors do not specify their accuracy rate, only stating they achieved a 

satisfactory result and up to 95% correct classification. Similarly, Deng et al. (2010) used a 

wavelet based crack detection method and SVM discrimination, and only reporting the 

maximum crack detection rate (98.9%). 

The objective of the present study was to find out what quality parameters of eggs can be 

estimated reliably based on nondestructive acoustic testing combined with multivariate 

statistical methods. 

 



Materials and methods 

150 eggs with a mass between 53-63g were tested, 20 of these were subjected to destructive 

testing weekly, the samples were originally 1-2 weeks old. Samples were stored at 21-25 °C 

50-70% relative humidity, in an upright, north-south (NS) position, and were tested for invisible 

micro cracks to separate the defected ones before beginning the experiments. Also the geometry 

of the eggs were measured by an image processing equipment, rotational symmetry was 

assumed for every sample. Every week all the remaining intact samples were examined with 

acoustic testing, also the 20 samples which were tested destructively for measurements of 

quality parameters were first cracked on purpose on the tip (opposite to the air chamber), and 

subjected to acoustic testing again. Acoustic excitation (a single knock) was carried out with a 

thin hollow steel rod in NS and a laid flat east-west (EW) positions separately, while samples 

were set upon a foam slab enclosing a microphone (figure 1). The microphone was connected 

to a Hewlett-Packard 53670A dynamic signal analyzer to support the microphone with a 200 

VDC phantom power. The output signal was then forwarded to a PC and recorded at 96 kHz 

sample rate in lossless wav format, audio files were further processed with a program written 

in MATLAB R2012a. 

The tested parameters and their units are listed in the header row of table 1. 

Figure 1.: Experimental setup, with the sample shown in both positions, with continuous line 

for the NS, and dashed line for the EW positions. 
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Ovality was calculated as the ratio of the length and width of the samples (m/m), and 

excentricity as the ratio of the distances into which the length is divided at the maximum width 

(m/m). Estimations for these two parameters were unsatisfying, therefore they were excluded 

from the table. Loss stands for the percentage of the weekly loss in total mass (g/g%) Shell 

thickness was measured with calipers at three locations, egg white dry matter was determined 

based on the weight loss of egg white samples after drying at 105°C for eight hours. 

During processing of the audio files, a wavelet-based denoising was conducted first (built-in 

function of MATLAB, optimized for the present measurements), then the Fourier transforms 

were calculated by Fast Fourier Transformation (FFT) for the NS and EW signals separately, 

yielding spectra of 512 data points between 0 Hz and 3000 Hz, and PLS regression was carried 

out on each of the measured parameters using these spectra. A continuous wavelet 

decomposition with linear scaling factors and Paul wavelet was also conducted on the signals, 

the wavelet coefficients were aligned in a vector to carry out principal component analysis 

(PCA). The 512 coefficients that explained most of the variance of the original dataset were 

chosen for further processing and aligned in a descending order of contribution to the explained 

variance. The resulting vector was realigned with the measured variables, and the new dataset 

was also subjected to a PLS regression. GOF was tested by the adjusted R2 (R2adj), minimum 

of the root mean squared error percentages of prediction and cross validation (RMSEP%, 

RMSECV%) values defined as RMSE/(range), and maximum of the residual predictive 

deviation (RPD, ratio of the standard deviation to RMSE) for the prediction and cross-

validation. R2adj is superior to the original R2 in respect to avoiding overfitting, because it is 

corrected for the number of estimators in the linear model and sample size. Although the 

prediction residual sum of squares (PRESS) metric is advisable to be calculated when 

regressing with multiple variables, in the case of the present dataset it would take an immense 

amount of calculation power and time to conduct a leave-one-out (LOO) cross-validation (CV). 

This would be required to calculate PRESS for 512 variables and over 700 observations for 

each parameter, therefore a ten-fold CV was carried out instead, which also yields reliable 

results to evaluate the GOF. The value of R2adj can be comprehended similarly as the normal 

R2 but for a large number of variables, also their relation (i.e. their difference) can give an 

insight on the limits of the regression. For this reason, as a reference point, the number of latent 

variables in the regression was increased until reaching the value of 0.9 for the non-adjusted 

R2. RMSE% should ideally be lower than 15%. Also the number of latent variables used can be 

important because it has an effect on the speed of the algorithm applied in practice, and therefore 



the applicability of the method on an industrial scale, the number of latent variables was 

maximized in 250. 

LDA classifications were carried out to estimate the presence of cracks and the age (counted in 

weeks) of the individual samples and the misclassification matrix was analysed. In this method, 

different FFT window sizes (2048, 4096, 8192) and multipliers (2, 4, 8) were used, the latter 

were applied to the extracted signal and the created empty signal part was padded with zeros. 

This process increases the resolution of the FFT, and provides an increased amount of spectral 

data to base the estimation on. Results of the LDA were also validated by ten-fold CV. 

Results 

The signals of the individual measurements in the different positions showed high correlation 

with each other with a median of R=0.96 and R=0.92 for the NS and the EW positions 

respectively. The typical shapes and spectra of the signals are shown in figure 2. 

 

 
Figure 2.: Typical shape of the signals of the NS (continuous line) and SW (dotted line) 

positions (a) and the spectrum of the same signals (b) 
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The PLS GOF metrics for each estimated parameter can be found in table 1., based on wavelet 

coefficients and spectral data, R2adj, RPD and RMSECV% are shown for the cross-validation 

and RMSEP% for the prediction. 

The results of the LDA can be found in table 2. 

 Table 1. GOF parameters for PLS models based on wavelet coefficients (a) and spectral 

Fourier-coefficients (b) 

 

Predictions for both positions and both attribute show a decrease in misclassification error with 

increasing window sizes as expected, but the multiplier, which is affecting the resolution 

heavily did not show such a clear trend. EW positions yielded a lower error than the NS 

positions, these differences became smaller with cross-validation, resulting in a high error rate. 

  

a  
mass 

(g) 

loss 

(g/g %) 

yolk 

mass (g) 

shell 

mass (g) 

shell thickness 

(mm) 

yolk/white 

(g/g) 

egg white 

dm (g/g%) 

NS 

R2adj 0.81 0.86 0.87 0.87 0.87 0.87 0.87 

RPD 1.50 1.25 1.02 1.05 1.02 1.14 1.06 

RMSEP% 5.01 3.63 7.61 4.24 4.20 7.44 5.16 

RMSECV% 10.61 9.25 23.70 12.96 13.10 20.96 15.67 

EW 

R2adj 0.71 0.84 0.80 0.81 0.81 0.81 0.79 

RPD 1.27 1.28 1.01 1.04 1.01 1.08 1.01 

RMSEP% 6.17 3.63 7.58 4.27 4.18 7.50 5.17 

RMSECV% 12.46 9.01 24.10 13.03 13.29 22.12 16.40 

         

b  
mass 

(g) 

loss 

(g/g %) 

yolk 

mass (g) 

shell 

mass (g) 

shell thickness 

(mm) 

yolk/white 

(g/g) 

egg white 

dm (g/g%) 

NS 

R2adj 0.89 0.88 0.87 0.87 0.88 0.88 0.87 

RPD 1.59 1.22 1.14 1.09 1.00 1.17 1.06 

RMSEP% 5.01 5.62 7.62 4.26 4.15 7.43 5.16 

RMSECV% 11.31 9.47 22.51 12.08 13.25 19.48 15.80 

EW 

R2adj 0.82 0.89 0.88 0.88 0.89 0.88 0.88 

RPD 1.32 1.43 1.04 1.10 1.01 1.14 1.02 

RMSEP% 5.03 3.62 7.43 4.19 4.18 7.39 5.01 

RMSECV% 11.39 9.11 24.30 12.36 12.77 22.40 15.57 



Table 2. Results of the LDA and cross-validation 

    Misclassification Prediction (%) Misclassification of CV (%) 

Window Length Multiplier Crack Date Crack Date 

    NS EW NS EW NS EW NS EW 

2048 

2 6.96 9.38 2.98 6.39 15.20 15.34 10.37 11.51 

4 10.08 3.41 3.13 0.85 21.59 21.88 21.02 19.17 

8 10.65 0.43 5.11 0.00 29.97 30.26 31.96 31.96 

4096 

2 3.84 4.40 0.14 0.42 22.59 23.72 11.93 12.93 

4 2.98 0.00 0.28 0.00 30.82 34.09 20.60 22.02 

8 5.53 0.00 0.71 0.00 28.41 29.26 22.30 18.89 

8192 

2 0.28 0.43 0.00 0.00 29.26 31.25 12.64 14.49 

4 1.27 0.00 0.00 0.00 25.43 23.44 7.10 6.53 

8 2.27 0.00 0.00 0.00 21.59 23.86 5.54 4.97 

 

Discussion 

As for the PLS regression, GOF metrics showed a better result for almost every variable when 

calculated from the FFT coefficients of the spectrum, in some cases the RMSE% values were 

lower for the wavelet-based estimation. This may be also caused by improper selection of the 

relevant wavelet coefficients for the regression, but it suggests that this calculation-heavy 

process is superfluous. Geometry variables were estimated with the worst results, but 

fortunately these are less relevant attributes for the industry, whereas more important 

parameters such as total mass, shell mass and egg white dry matter gave better estimations 

GOF metrics were satisfactory, but not as good as expected; this can be partially attributed to 

the limitation of R2 to 0.9 during the process, probably another limit should be set in further 

processing of the raw data, and more sophisticated pre-processing of the spectral data should 

enhance the acquired metrics. 

In the results of the LDA, adjustments for the least resubstitution (misclassification) error 

should be considered the best, but it is important to note, that the window size and the multiplier 

affects the process time inversely, therefore their value should be taken into account when 

choosing the right adjustments, and for reliability, this should be done to the CV results. Since 

the multiplier increases process time more than window size, hence a lower multiplier should 

be preferred over a lower window size, although the classification process is still much less 

time consuming, than the parameter-estimation from the PLS regression model. It is also 

important to choose a position that will provide the most valuable data, therefore no intermittent 



realignment of the sample is necessary in an industrial case, and the NS position gave the better 

estimation altogether. With that being said, the acoustic tests’ results were found to be 

consistent regarding the most important quality parameters, and can be simultaneously used for 

crack detection and age estimation as well in real time, which is a major advantage over other 

NDT methods used to date. 

Further experimentation is suggested using a wider mass range of egg samples. As for signal 

processing method refinement, enhanced pre-processing of estimator variables, the application 

of different mother wavelets and non-linear regression methods, for classification, the use of 

SVM and neural network methods are suggested. 
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